Propiedad |
Señal |
Transformada Z unilateral |
Desplazamiento a la derecha |
x\left[ n-1 \right] |
{{z}^{-1}}X\left(z \right)+x\left[ -1 \right] |
x\left[ n-2 \right] |
{{z}^{-2}}X\left(z \right)+{{z}^{-1}}x\left[ -1 \right]+x\left[ -2 \right] |
x\left[ n-N \right] |
{{z}^{-2}}X\left(z \right)+{{z}^{-1}}x\left[ -1 \right]+x\left[ -2 \right]+\ldots x\left[ -N \right] |
Desplazamiento a la izquierda |
x\left[ n+1 \right] |
zX\left( z \right)-zx\left[ 0 \right] |
x\left[ n+2 \right] |
{{z}^{2}}X\left( z \right)-{{z}^{2}}x\left[ 0 \right]-zx\left[ 1 \right] |
x\left[ n+N \right] |
{{z}^{N}}X\left( z \right)-{{z}^{N}}x\left[ 0 \right]-{{z}^{N-1}}x\left[ 1 \right]+\ldots zx\left[ N-1 \right] |
Conmutación periódica |
{{x}_{p}}\left[ n \right]u\left[ n \right] |
\frac{{{X}_{1}}\left( z \right)}{1-{{z}^{-N}}} |
Teorema del valor inicial |
x\left[ o \right]=\underset{z\to \infty }{\mathop{\lim }}\,X\left( z \right) |
Teorema del valor final |
\underset{n\to \infty }{\mathop{\lim }}\,x\left[ n \right]=\underset{z\to 1}{\mathop{\lim }}\,\left( z-1 \right)X\left( z \right) |