Ejercicios de representación matricial


1. Considere las siguientes ecuaciones:
  1. Diga si cada ecuación es lineal o no lineal; si es lineal determine si es homogénea o no homogénea.
  2. Para cada ecuación, escriba sus coeficientes, su término constante y su ecuación homogénea asociado.
  3. Para cada ecuación lineal ordene sus variables y diga cuál es la variable delantera y cuáles son las variables libres.


2. Encuentre todos los valores, tales que cada una de las siguientes ecuaciones tenga:

  1. Exactamente una ecuación.
  2. Soluciones infinitas.
  3. Ninguna solución.

3. Remplace el sistema lineal en la forma canónica, es decir en forma matricial:





4. Determine:

  1. Determine coeficientes.
  2. La matriz aumentada.
  3. El sistema homogéneo asociado.


5. Aplique la sustitución hacia atrás para resolver el sistema: